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J. Phys. A : Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

On the time-dependent perturbation theory 

N. D. SEN GUPTA 
Tata Institute of Fundamental Research, Bombay-5, India 
MS.  received 17th November 1969, in revised form 26th May 1970 

Abstract. I t  is shown that if the time-dependent perturbation Hamiltonian 
admits of Fourier resolution, then the solution of the wave equation possesses 
perturbation expansions, without any secular term. Further, each term can be 
expressed in terms of its Fourier resolution. 

1. Introduction 
The object of this short paper is to develop a perturbation expansion for the wave 

function of a system acted on by a time-dependent perturbation where the Hamiltonian 
due to the perturbation may be expressed in Fourier integral form. Even for systems 
with a periodic or oscillatory perturbation, one encounters serious difficulty due to the 
presence of so-called secular terms, i.e. terms of the type P(t)T(t), where P(t) is a 
polynomial and T(t) is a trigonometric function of time t. These unphysical terms 
appeared in the study of classical celestial mechanics in the last century and PoincarC 
(1895) developed methods to obtain oscillatory solutions for such systems. More 
recently Krylov and Bogoliubov (1937) and later Bogoliubov and Mitropolsky (1958) 
have developed perturbation methods to obtain asymptotic solutions without secular 
terms. These methods are undoubtedly very powerful in the sense that they are applic- 
able to quite general time-dependent problems and further, they are extremely useful 
in nonlinear problems. 

In  quantum mechanics, the equations are linear, which simplifies the situation 
enormously. During the last forty years there have been quite important developments 
in the general theory of linear differential equations and in particular of those with 
periodic coefficients. In  developing a time-dependent perturbation theory it seems to 
be more apt to utilize these results. Let 

(1) 

where X i s  the unknown vector and IT( t )  is a periodic matrix such that 

I T ( t + T )  = rr(t). 

X ( t )  = r(t) exp(~(t-t,)}I'-l(t,) X ,  

It is well known (Halany 1963) that the solution which is X ,  at t o  is of the form 

(2) 

where the matrix r(t) is periodic such that F ( t +  T) = r(t). This is a generalization of 
Floquet's theorem for a single unknown function (Ince 1926). The  constant matrix C2 
known as monodormy matrix, can be shown to be diagonalizable so that instead of 
working with any arbitrary X,, if r-l(t,) X, is an eigenvector Y of eigenvalue p of 
i2 then 

x ( t )  = exp{p(t- to)}r(t)Y. (3) 
618 
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Hence, in an adequate perturbation theory both the index ,U and the vector I'(t)Y 
should be expanded in ascending powers of the perturbation parameter E so that the 
Schrodinger equation 

ay 
i h x  = {Ho+~Hl(t)}'Y (4) 

where H o  is the unperturbed Hamiltonian which does not depend on time, should have 
solution of the form 

H,(t+ 7) = H,(t) and E is the perturbation parameter. (Pk are eigenfuctions of H o  with 
eigenvalues Ek. aiN)(t) are periodic, i.e. aLN)(t+ T )  = aiN)(t). It may be recalled that 
in the theory of nonlinear oscillations one also starts from expansions which are to 
some extent similar to the expression ( 5 ) ,  Krylov-Bogoliubov (1937). 

When H,(t) is not periodic but has the Fourier resolution 
CO 

H,(t) = 1 H ( w )  exp(iwt) d w  
- m  

the form of the expansion (5) suggests that one should attempt a perturbation expan- 
sion of the solutions, equation (4) in the form 

x { A ~ ' + a A ' , f ' ( t ) + E 2 A ~ ( t ) f  ... 1 (7) 
where A") are constant and Af?"(t) have the Fourier resolution 

m 

A y ' ( t )  = 1 A T (  w )  exp( iwt) dw 
- m  

This  suggestion is a posteriori justified in 5 2 in the case of separable Hilbert space. 
Thus  we arrive at solutions which no longer contain secular terms. 

The  nature of the solutions thus obtained is studied in § 3 ; it is shown that they 
form a complete orthonormal set. The  initial-value problem is investigated in $4, where 
the solution evolving from any arbitrary initial state is obtained. 5 5 is devoted to the 
solution of the secular equation so as to obtain the characteristic unperturbed states, 
which are linear combinations of the unperturbed solutions. I n  0 6 we have studied the 
special cases (i) the periodic perturbation and (ii) the perturbation is the sum of two 
individually periodic terms with different periods. The  last section is a general dis- 
cussion on the method. 

2. The perturbation expansion 
We assume that the eigenvalues Ek of Ho,  are discrete and the eigenfunctions 'pk 

form a complete orthonormal set; further, they are known already. It is clear from 
2 A  
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equation (7)  that the starting unperturbed solution is to be taken as a linear combina- 
tion of steady-state solutions of Ho,  i.e. 

i 
YiO) = 2 A:’exp (- Ekt)yk, 

k k 
(9) 

The  constants Aio’ are as yet arbitrary but for the above restriction due to normaliza- 
tion. Substituting the expression (6) for H ,  in equation (4) and equating the co- 
efficients of on both sides, we get for N 3 l 

In  the above we have used the abbreviation 

Hk,(w) (f)&?(w)Cp,) and ek.(w) = exp (i -(Ek-Ej+hw)t]. (11) 

These equations can be integrated successively starting from AT = 1. The constants 
A‘”) are to be determined such that the ALN)(t) have Fourier resolutions as given in 
equation (8). Thus for, N = 1, 

The integrand on the right-hand side is so written that it is zero at w = (E1-Ek)/h; 
thus the integral exists if H k l ( w )  is differentiable at w = (E, - &)/he We will assume 
it to be so; hence, the integration can be carried out in a straightforward manner. 

2.1. The unperturbed solution 

A(1) and Aio) such that 
Thus ALl)(t) will not have any secular term and will be of the form (8) if we choose 

This is an eigenvalue problem. The order of this secular determinant is that of the 
dimension of the space of unperturbed eigenfunctions. Though the problem becomes 
more and more complicated with the increase of dimension, it is not unwieldy and 
one can solve the problem by successive approximation if one notes the restriction on 
Hk,{(E, -,Yk)/h) due to the physical nature of the problem and the convergence of the 
integral (8). We will take up this in 9 5 .  

We observe, here, that from the hermiticity of H ,  it follows 

Hence, the eigenvalues Ai1) are real and the eigenvectors A, are orthonormal. The  
equations (13) and (9) show that if we want the solution to have the stipulated property 
we cannot start with any arbitrary unperturbed solution but those linear combinations 
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formed by the eigenvector of Hik((Ek-E3)/h}, I n  order to specify this starting 
unperturbed solution we use the subscript a to denote the solution Y ,  which corres- 
ponds to the eigenvalues Xi1) and the eigenvectors A, of equation (13), such that 

yff + 2 A,, exp( - t  Ekt)qk as E -+ 0. ( 5 ’ )  

2.2. First-order terms 
It follows from equation (1 1) that 

1 J - a  R 

where we have used the notation 

I n  order that the Y, are orthonormal the matrices {bf fD} which are constants, should be 
Hermitian, they are to be determined from second-order terms. One may recall the 
similarity of this procedure, of choosing the linear combination of unperturbed 
states and determining the constants of integration from next higher-order terms, to 
that followed in the degenerate time-independent perturbation theory (Born et al. 
1926). It is also similar to that in the case of the Krylov-Bogoliubov theory of non- 
linear oscillations. 

2.3. Second-order terms 
We substitute the expression (14) for A&) in equation (10) for N = 2 and proceed 

exactly in the same manner as in the previous case to choose AL? and b so that the 
right-hand side can be integrated in a straightforward way. Thus 

(15) 

Hence 

Finally 

where the faa are constants. We can proceed in this way to any higher-order terms. 
The  question of convergence of the series will not be taken up here. 
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3. The characteristic solutions 
The solutions_obtained above may be made orthonormal. This is evident from 

equation (4), as {Ya( t )YD(t )}  is constant and one can choose the constant to be inde- 
pendent of E .  So that 

P,(t)YD(t)) = {!Py(t)Yy(t>} = &@. 
Next, it is clear from above that to eachYio)(t) there corresponds aYa(t) and Y i o ) ( t )  is. 
obtained from ' pk  by a unitary transformation. Hence, the solutions Y,(t)  form a 
complete set. Thus one can write 

where {U&} is unitary, the elements of which are given by equations (7), (S) ,  (14) and 
(17). The characteristic solutions are the interesting ones from the physical point of 
view and their role is the same as that of steady states in the unperturbed system. 

4. The initial-value problem 
It follows that the most general solution of equation (4) is a linear combination of 

the Yu(t). So that one can easily find the solution which evolves out of any arbitrary 
initial state, either a pure or a mixed one. Let the initial state at t = to be Y(to), since 
the qJk form a complete set, Y(to) can be expressed as 

It is easy to verify that Y(t) which at t = to  is Y?(to) may be expressed as a linear 
combination of Yu(t) as 

T(t) = C g a W t )  (21) 
a 

where 

5. The characteristic unperturbed states 
Our investigation shows that if the time-dependent perturbing operator possesses 

Fourier resolution, a perturbation expansion of the wave function can be found where 
each term admits of Fourier resolution. One can simply write down the expansion in 
terms of the eigenvalues and eigenvectors of the secular equation (13). I n  general it is 
not possible to write the solutions of this equation in a closed form. However, the 
existence of the integral (6) demands that IHkj(w)I -+ 0 very rapidly with /wI -+ CO. 

Further, in most of the physical problems the spectra are concentrated in small fre- 
quency intervals, hence the effective contribution is only from a small number of 
terms. The  nature of these unperturbed states is characteristic of the perturbation 
and there cannot be a general rule to write them down. Here we will discuss two 
special cases to obtain them. 

5.1. The low-frequency spectrum 

contributions are only from 
The  spectra are concentrated in the low-frequency region. In  this case, the effective 

H,,j + ), Neglecting higher powers of small ratios, 
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A P )  and A,, are given by 
I H n ( n - 1 ) I 2  + (1) IH,(?l+1)I2 A, = Hn,+ 

A,, = 1, j (23) 
H(,+l)cn+l)-H,, H ( * - l ) ( n - l ~ - H n n  

A,UL*l) = w L ( , * U  

H(n * 1)( n * 2)An(n i 2) = 4 H n n  - H(n * l ) ( n  * 1))Hncn p 1) - H(n * 1)n. 

If there is degeneracy, one has to start with suitable linear combinations, such that in 
this subspace it diagonalizes H j k ,  The  arguments of H,, are (E,-E,)/A . k is a 
constant. 

5.2. Resonant case 

so that [H121 is very large and H,(,* 
ing higher order of small ratios, 

I n  the case of resonance, i.e. the spectra are mostly concentrated at ( E ,  - E,)/h(say); 
are the only remaining effective terms. Neglect- 

Here, two of the characteristic unperturbed states are linear combinations of rpl and ' p z .  

As a matter of fact if H'(t) = eH0 cos(wt + 8) the above solutions (equation (24)) are 
exact. 

6. Special cases 

cases which are important from a physical standpoint. 

of problems. So that 

I n  this section we wish to study the nature of the solutions in some particular 

(i) The  time-dependent perturbation is periodic which encompasses a large number 

m 

H(w) = 2 H(n)G(w-nu,). (25 ) 
- 0 3  

I n  the case Ek - El # nu,, it is readily observed that H,,{(E, -&)/A} is diagonalized in 
the space of unperturbed eigenvectors (pk, hence, they are the characteristic unperturbed 
states and Yk(t) --f 'pk exp{ - (i/h)Ekt} as E -f 0. The solutions retaining first-order 
terms are given by 

It may be possible to absorb the diagonal elements Hi:) in the unperturbed Hamil- 
tonian, to get rid of the first exponential factor, but this cannot be continued in the 
second-order where the coefficient A':) in expression (5) is 

In  general Xf) f 0 and they manifest some interesting effects of second-order terms, 
e.g. the intensity-dependent frequency shift in scattering problems (Kibble 1964, 
Eberly and Reiss 1966, Goldman 1964, Sen Gupta 1967). 
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(ii) Next, let us consider 
W 

HI = 2 ( H ’ ( n ) 6 ( w - n w , ) f H ” ( n ) S ( w - n w , ) )  (28) 
- m  

i.e. the perturbation consists of two periodic terms. A special case of which is the 
problem of electrons in the field of two electromagnetic beams; this has been studied 
by Reiss (1962) and the author (Sen Gupta 1966). We will restrict our discussion to 
the case E k -  E,  # nw,h for i = 1,2 .  In  this case also H,, is already diagonal and the 
expression for Xi1) and .Ai1) similar to those in (26) may be obtained. However, in 
second- and higher-order terms, a physically interesting situation appears owing to 
the possibility of absorption of Awl, and emission of Am2 and vice-versa. However, 
the expressions at this stage become highly involved so that they should be better 
taken up separately. These transitions are enhanced when Ek - El = A ( n q  - mu,). 

7. Discussion 
Let us examine the nature of the solutions we have found and let us compare them 

with the solutions which are obtained from the conventional time-dependent pertur- 
bation theory. The  first point to be noted is the first exponential factor in the expression 
(7) ,  the index of which is a power series in E, the perturbation parameter. It is clear that 
if one expands the solution directly in powers of E, as it is done in the usual time- 
dependent perturbation theory, then each term increases indefinitely with t. This is 
one of the reasons for the appearance of secular terms in the usual perturbation theories. 
The  other important point is that the characteristic unperturbed solutions are not, in 
general, eigenfunctions of the unperturbed Hamiltonian (even in the first-order of 
small quantities)-as is clear from 4 5.2 in the case of resonance. This is tacitly 
assumed in the usual time-dependent perturbation theory. Thus it is possible to 
obtain solutions without secular terms even in case of resonance. They are of physical 
interest as they manifest the second- and higher-order effects. With the advent of 
very high-intensity fields their contributions may no longer be negligible. We intend 
to investigate the transition rates in general and in the presence of resonance in future. 
Finally, the method followed here may be extended, though only in some special cases, 
to systems in which the eigenvalues are no longer discrete. 
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